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The thermocapillary flow field in a uniformly rotating liquid cylinder heated from 
above is calculated using linear boundary-layer theory appropriate for small values 
of the Ekman number. The results show that the thermocapillary flow is confined 
to a thin layer at the liquids= interface if the temperature difference across the 
cylinder is sufficiently small. The interior flow is a uniform rotation with the 
endplates. 

The flow due to centrifugal buoyancy is also analysed using the same theory. The 
magnitude of this flow compared with the thermocapillary motion is smalJ in typical 
circumstances. However, it  does influence the temperature field in the interior of the 
cylinder, whereas the thermocapillary motion does not. Full details of these flows and 
the first-order corrections to the interface shape are presented. 

1. Introduction 
Buoyancy-driven convection can be a major physical limitation in many materials- 

processing techniques. Thus one can see why the Space Shuttle’s ability to deliver 
a true microgravity environment for an extended period of time has simulated a large 
amount of interest and research in those techniques which would benefit from such 
an environment. One of these techniques is the float-zone processing of single crystals 
from the melt. In  this paper we shall describe the fluid dynamics of the melt associated 
with the interaction of two of the dominant mechanisms for fluid motion in this 
system. 

The float-zone process of crystal growth from the melt is shown schematically in 
figure 1 (a). Here a ring heater maintains a liquid ‘float zone’ that bridges the gap 
between two cylindrical rods. The lower polycrystalline feed rod travels into the zone, 
where it is melted, while the upper rod is pulled out of the zone to form a single crystal. 
During this process a small amount of dopant is added so that the final crystal will 
have certain desired electrical properties. Ideally, the dopant should be uniformly 
distributed throughout the crystal in both the radial and axial directions, but 
depending on the particular dopankrystal  combination this can be very difficult to 
achieve. For example, Keller & Muhlbauer (1981) show that for phosphorous-doped 
silicon crystals with a 53 mm diameter a total radial resistivity variation of about 
15 yo is the best that can be achieved. Even resistivity variations as high as 60 yo are 
possible depending on the particular process parameter settings. (Here the resistivity 
of the crystal at any location is inversely related to the dopant concentration at that 
location. ) 

Two of the major factors affecting the dopant distribution in the crystal are the 
flow field and the temperature field in the melt. These fields influence the crystal-growth 
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FIGURE 1. Sketches of (a) the geometry of the float-zone crystal-growth technique, and ( b )  the 
typical thermocapillary convection cells seen in a float zone (from Schwabe d al. 1978). 

process in two ways. First, they can affect the shape of the crystallizing interface, 
which in turn can affect the radial dopant concentration. Secondly, the flow field can 
modify the thickness of the diffusion boundary layer of dopant-rich liquid that forms 
near the crystallizing interface as a result of the segregation of dopant during 
crystallization. This thickness modification then affects the concentration of the 
dopant incorporated into the crystal. Thus a complete understanding of these fields 
and their interaction with the crystallization process is necessary in order to truly 
optimize the float-zone crystal-growth technique. 

The first step in such an understanding is to investigate the types of fluid motion 
present in a float zone without crystal growth. There are several driving forces 
present. The crystal and the feed rod can be rotated either independently or together 
to produce a forced convection in the zone. The non-uniform temperature field 
induced by the heater will produce variations in the density of the melt which cause 
fluid motion through the vertical gravitational force or the radial centrifugal force 
if the float zone is rotating. The non-uniform temperature field will also produce 
variations in the surface tension of the melt-gas interface which cause a fluid motion 
known as thermocapillary convection. In general, these motions cannot be studied 
independently because they are intimately coupled. However, in this paper we are 
interested in the float-zone processing of single crystals in the microgravity environment 
of Space, and so we can safely neglect gravitationally driven buoyancy flows. 

Of the remaining flows mentioned, thermocapillary convection in a float zone 
without rotation has been studied extensively both numerically and experimentally 
(for a review of this work see Schwabe 1981). The main characteristics of such flows 
are shown in figure 1 (b). Here we see two toroidal convection cells whose centres lie 
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close to the melbgas interface but which penetrate completely into the interior of 
the zone. The experimental work of Chun (1980) and the numerical work of 
Kobayashi (1984) have suggested that these cells become confined to a thin region 
near the melt-gas interface if the zone is uniformly rotated with a large enough 
angular velocity. In  this work, we perform the detailed calculations which describe 
the flow in this limit. 

To begin we simplify the float-zone geometry to that of an axisymmetric shape 
in uniform rotation. The governing equations are properly scaled and presented in 
$2. The first assumption made is that of large surface tension and of a particular 
liquid volume so that the free surface assumes the shape of a circular cylinder which 
behaves to first order as a non-deformable surface, but one that is able to support 
thermocapillary stresses. This greatly simplifies the free-surface boundary conditions. 
One of the parameters derived from the scaling of the equations is the Ekman number 
E defined as the ratio of the viscous forces to the Coriolis forces in the zone. For a 
silicon float zone one centimetre in radius rotating at one radian per second 
E = 0.0035. With such a small value of E one may suspect the existence of viscous 
boundary layers as described by Greenspan (1968) for various other rotating systems. 
An analytical representation of these boundary layers is presented in 93 under the 
additional assumption that the axial velocity at the liquid-gas interface (or 
equivalently the temperature difference across the zone) is small enough so that the 
nonlinear terms in the governing equations can be neglected. 

For completeness, we consider the remaining buoyancy-driven motion caused by 
the radial centrifugal force field in 94. To distinguish this from the gravitationally 
driven flows seen in Earth-based processes we call this a centrifugal-buoyancy-driven 
motion. Such flows in rigid cylinders have been well studied by Barcilon & Pedlosky 
(1967) and by Homsy & Hudson (1969). As we shall see, the free surface in this work 
has a distinct effect on the motion in the boundary layer that appears along the side. 
Also, in $5 we calculate the effect of the centrifugal-buoyancy flow on the temperature 
field in the interior of the cylinder. 

Section 6 shows how the free surface of the liquid is deformed from its original 
cylindrical shape as a result of the above flows. This deformation is calculated as the 
next term in a perturbation series for small capillary number, i.e. for large surface 
tension. 

Finally, since our original motivation for studying this problem has to do with 
crystal growth, we discuss the restrictions placed upon the operating parameters as 
a result of the linear assumption for a float zone of silicon, one of the most common 
materials used in this process. 

2. Formulation 
The float-zone geometry used in this investigation is shown in figure 2. It is 

described using a cylindrical coordinate system ( r ,  8,  z) ,  with unit vectors (e,., e,, ez), 
and whose origin lies in the centre of the zone. The z-axis lies along the axis of 
symmetry of the zone. The top and bottom of the zone are rigid plates located at 
z = f L. The lateral interface between the liquid and the ambient gas is located at 
r = q ( z )  and is assumed to be both slightly deformable and able to support 
thermocapillary stresses. 

The liquid zone and the top and bottom plates are uniformly rotating at the 
constant angular velocity o = Qe,. The top and bottom plates are held a t  the 
constant temperatures TH and Tc respectively, with TH > T,. Outside the zone the 



248 M .  K .  Smith 

Cold 

't 

FIQVRE 2. The axisymmetric float-zone geometry. 

ambient gas is assumed to be passive with a constant pressure and a temperature 
T, that varies linearly from TH at the top of the zone to T, at the bottom. Gravity 
is ignored. 

The velocity in the liquid is 2) = (u,  21, w ) ,  P the pressure, T the temperature, p the 
fluid density, ,u the viscosity, u the surface tension, yT the negative rate of change 
of surface tension with temperature, /3 the thermal expansion coefficient, K the 
thermal diffusivity, k the thermal conductivity, and h is the thermal unit-surface 
conductance . 

The equation of state for the surface tension is assumed to be u = ao-yT(T-To)  
where To is a reference temperature and uo is the surface tension at that temperature. 
The density is assumed to be p = po[l -/3(T- To)],  where po is the density at  T = To. 

The governing equations are scaled as follows: a, radial length; L, axial length; 
Us, axial velocity ; Us a / L ,  radial and azimuthal velocity ; po  Us Qa, pressure; 
AT = !j(TH - T,), temperature ; and To = +(TH + T,), reference temperature. The 
velocity scale Us is actually the axial interfacial velocity a t  the liquid-gas interface 
due to thermocapillarity and is unknown at this point. These scales give rise to the 
following dimensionless parameters: the aspect ratio A = a / L ;  the Ekman number 
E = v/Qa2; the Rossby number e = U S / a a ;  the buoyancy number a = BAT/€; 
the Prandtl number Pr = u / K ;  the ratio of the surface-tension gradient to viscous 
forces MT = yT AT/pUS; the capillary number Ca = ,uUs/uo; the rotational Bond 
number B, = poQ2a3/ao; and the Biot number B = h / k .  

The dimensionless governing equations for steady axisymmetric flow in a frame 
of reference rotating with the cylinder are as follows: 

U 
= -A-'pr-A-'arT+2v+E ( 2 . 1 ~ )  

(2 . lb)  

~A[uw,+ww,] = - A p z + E  (2.1 c )  

sA[uT, + wT,] = Pr-l E (2 . ld)  

(2.1 e )  
i a  
-- (ru)+w, = 0 ,  
r ar 
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where p = P - r 2 / 2 e .  (2 .1 . f )  

o = T T 1 =  0.  (2.19)  

The boundary conditions on the deformable free surface are as follows: normal stress 

-pCaE-l -k2Bn + ~ C U A N - ~ [ U ,  -q,(w, + A2u,) + A2qE wz] = 2H( 1 - M ,  CaT) ; 
( 2 . l h )  

{A27,[2ur - qz(wr + A%,)] + w, + A%, - 2A2w2 q,} N-' = - M ,  A( T, + q, T,), (2.1 i) 

The boundary conditions on the top and bottom rigid plates are 

tangential stress 

n. 

w r - ~ - A 2 q z v ,  = 0 ;  
T 

the kinematic condition u = qzw;  (2.1 k )  

(2.11) and the thermal condition 

where the curvature is 

(2''- A2q, T,) N-l+ B(T- T,) = 0; 

2H = A 2 ~ , ,  N-'- (qN)-', N = ( 1  + A2q:)t, (2.1 m, n )  

and the ambient temperature is T, = z. (2 .  l o )  

To complete the boundary conditions, we shall assume that the contact lines at 
z = 1 are pinned to the rigid plates so that 

q = 1  a t z = + l .  (2 .1P) 

In  addition, the liquid volume is constant, so 

a2L jIl q 2 d z  = V, a constant. 

We choose V to be the volume of the cylinder of radius a and length 2L,  i.e. V = 21ta2L, 
so that now 

j:l q2dz = 2.  ( 2 . l r )  

Our first simplification of these equations will be with respect to the free-surface 
boundary conditions. In  table 1 we list typical material properties for liquid silicon 
at 1410 "C. For a silicon zone with a = L = 1 cm, rotating at the angular velocity 
Q = 1 rad/s, we find that B, = 0.0035 4 1 .  The capillary number cannot be 
computed at this point because Us is unknown. However, even for Us = 100  cm/s, 
which is an unreasonably large number for the interfacial velocity, we have 
Ca = 0.0012 + 1 .  

With both Ca and B, << 1 and the liquid volume chosen appropriately, we can 
assume that the liquid zone is nearly a circular cylinder. The system (2.1) can now 
be solved by expanding all dependent variables in a power series in Ca. Therefore 

q = 1 + CaS(z) + O(Ca2),  

p = Ca-lp-l +Po +O(Ca), 

( 2 . 2 ~ )  

(2 .2b)  

(u,w,w,T) = ( u o , ~ o , ~ ~ , ~ o ) + o ( ~ a ) .  (2 .2c)  
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Material properties Proceaa parameters 

p = 0.88 x lop2 g/(cm s) Sa = 1 rad/s 
po = 2.5 g/cmS u = l c m  

u = 0.35 x lop2 cm2/s L = l c m  
k = 0.32 x 10' erg/@ cm "C) A = 1 
K = 0.15 cm2/s E = 0.0035 
a, = 720 dyn/cm B, = 0.0035 

Us = 7.4 AT cm/(s "C) 
yT = 0.43 dyn/(cm "C) 

Pr = 0.023 

A - I ~  = 0.19 x 10-4 
p = 1.43 x 10-4 oc-1 

cu = 9.0 x 10-5 AT oc-1 
B = 7.4 AT "C-' 

TABLE 1. The material properties of liquid silicon at 1410 "C, and typical process parameters 
for a silicon float zone 

Substituting forms (2.2) into system (2.1) we find that at O(Cu-l), p- ,  = constant. 
We can determine this constant from the normal-stress boundary condition (2.1 h), 
which is now 

-p_,E-'-+B,+l + C U [ - ~ ~ E ~ ~ + ~ A ~ ~ , - A ~ S " - S ( ~ + B ~ ) ] + O ( C U ~ )  = 0. (2.3) 

Thus ppl = E(1 +,)* (2.4) 
At O(1) we find that the differential equations stay exactly as given in system (2.1), 

and that the free-surface boundary conditions become those appropriate to a surface 
incapable of moving normal t o  itself, but able to support tangential stresses. These 
are 

o n r =  1. t 
(2.5~) 

(2.5b) 

(2.5~) 

To,+B(To-T,) = 0 I (2.5d) 

The solution of system (2.1) with the boundary conditions (2.5) will be the subject 
of the next three sections of this paper, and hence, for simplicity, we shall drop the 
zero subscript. 

We shall solve these equations in terms of a stream function defmed as 

u = $z. (2.6a, b)  

The global mass-conservation condition is 

@ = O  o n r =  1 and z = 1 1 .  (2.6~) 

3. The thermocapillary flow 
To solve the system of equations (2.1) with boundary conditions (2.5) we first 

m u m e  that EA is small enough so that the nonlinear terms can be ignored. The 
resulting linear system is then solved in two parts: one due to thermocapillarity and 
one due to centrifugal buoyancy. 

The flow due to thermocapillarity is described by (2.1) with € A  = a = 0. For the 
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typical silicon zone described in table 1, E = 0.0035. Thus we expect boundary-layer 
behaviour on all surfaces and a core flow in which viscous effects are small. To solve 
for this core flow we drop the two viscous boundary conditions on the liquid-gas 
interface and note that the temperature field has now decoupled from the velocity 
field. Since this coupling provides the only mechanism for fluid motion, the core 
solution of the linear momentum equations is just $ = u = p = 0. With no motion 
in the core the temperature field is governed completely by conduction and can be 
found for any given temperature field in the ambient gas T'(z). The resulting surface 
temperature distribution will then force the boundary-layer flow at the liquid-gas 
interface through the axial viscous-stress boundary condition in (2.5b). Only to the 
next order in the small parameter EA is it  possible for the convection field in the 
cylinder to influence the temperature field. For simplicity, we choose T, = z. The 
solution for the temperature field is then also T = z. 

Using a general scaling analysis of the linear equations (2.1), we find that the 
boundary layer has a lengthscale O ( B )  and that v = 0(1) and $ = O ( @ .  In  addition, 
Ekman layers with a lengthscale O @ )  appear at the rigid plates in the a side layer. 
Instead of solving for the flow in the Ekman layers explicitly, we use the equivalent 
Ekman matching condition obtained from Greenspan (1968) : 

w = T +A,?& - - (TV) + O(E)  on z = & 1. 
T ar (3.1) 
i a  

To solve for the flow in the boundary layer at the liquid-gas interface we introduce 
a boundary-layer coordinate 

and scale v = vo, $ = B$O, (3.3a, b) 

where vo and $O are 0 ( 1 )  quantities. These are substituted into the governing linear 
system of equations (2.1) to obtain the following boundary-layer equations : 

p = (l-r)E4, (3.2) 

GpPp + 2Aav; - 2B$;pp + O(B) = 0, (3 .44  

(3.4b) vo PP -2*;-BV;+o(B) = 0, 

V;+J~VO+O(B)  = 0, 

+qp- 1 -B$;+o(B) = 0, (3.4c) 

(3.4d) 

(3.4e) 

$O,v0-tO asp-too (3.4.f) 

~ ~ T : A ~ V ~ - E ~ ~ ~ + ~ A ~ V O + O ( B )  = 0 on z = +1. (3.49) 

The condition (3.4f) is the appropriate matching condition to the stagnant core in 
the uniformly rotating reference frame, and condition (3.49) is the equivalent Ekman 
matching condition. 

The driving force for the motion in this boundary layer is the thermocapillary shear 
stress. To reflect this fact, we have chosen the velocity scale so that the thermocapillary 
shear stress and the fluid shear stress at the cylindrical surface are both unity, i.e. 
we have set M ,  A B  = 1 in developing the boundary condition ( 3 . 4 ~ ) .  The velocity 
scale is then defined as 

us = eT ,@A. (3.5) 
P 

9 FLY 168 
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A solution of system (3.4) that is uniformly valid in terms of the boundary-layer 
coordinate p can be obtained by using the method of multiple scales. To begin we 
define two additional variables as follows : 

[ = A + ,  x = B p = l - r .  (3.6a, b )  

We consider vo and $O to be functions of all the independent variables p, f ,  x and z, 
so that becomes a/tIp++E!/af+Ba/ax. The solution of system (3.4) is then 
found in terms of the following asymptotic series: 

$0 = O p + B ' $ P + ~ 2 $ 0 + . . * ,  vo = ovo+Ef'vo+B~vo+ ... . (3.7a, b) 

From this analysis a leading-order approximation for the flow in the cylinder that 
is uniformly valid in the coordinate p is given as 

03 

$ = B  x f y p ,  f , x )  COsAnZ+ ..., 
n-1 

( 3 . 8 ~ )  

(3.8b) 

An = ( n - + ) x ,  (3.8d) 

yn = (2AAn)4. (3.8e) 

In figures 3(a) and (b) we show the meridional circulation and the azimuthal 
velocity respectively for A = 1 and E = lops. A particular value of the Ekman 
number is chosen here because E appears implicitly in the leading-order approximation 
of the solution through the scaled variables f and 2. This is typical of asymptotic 
solutions obtained by the method of multiple scales. These figures extend from the 
interface to about 4 % of the cylinder radius for this value of E. Note that the ' cellular ' 
behaviour seen in figure 3 (a) continues into the interior but with a magnitude that 
decays exponentially like exp ( - !jyl E+( 1 - r ) ) .  Figures 3 ( c )  and ( d )  show how the 
motion in the layer is deformed as the Ekman number is increased from lo-'' to 
However, note that when E = the extent of the figures is 40% of the cylinder 
radius. 

The flow field in the cylinder is relatively simple because of the decoupling of the 
driving force at the liquid-gas interface from the interior fluid. The thermocapillary 
stress at this interface is balanced by viscous stresses in a boundary layer with an 
O(@) lengthscale. As one moves away from the interface, viscous stresses cannot 
balance the resultant Coriolis forces and so the interior of the cylinder remains 
motionless. This confinement of the thermocapillary convection to a boundary layer 
at  the liquid-gas interface is a consequence of the Taylor-Proudman theorem for the 
motion in the inviscid core, since such motion cannot vary in the z-direction. 

The azimuthal velocity in the boundary layer is an odd function of z and is not 
zero on either the top or bottom plates, as shown in figure 3(b). These rigid-plate 
boundary conditions are satisfied in Ekman layers with a lengthscale O ( B ) .  The 
upper Ekman layer produces a net mass flux out of the top edge of the layer which 
is ejected back into the side layer by an B by I& corner source singularity located 
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FIGURE 3. Thermocapillary motion in the side boundary layer of the liquid cylinder with A = 1 .  
(a) The meridional circulation for E = the kinks in the zero streamline (dotted line) are an 
artifact of the plotter. (b)  The azimuthal velocity for E = -, z = - 1.0; - - - -, -0.75; 
-_- , -0.5; - - - - -, -0.25. (c) A comparison of the meridional circulation for E = 
(-) and E = (- - - ). (d) A comparison of the azimuthal velocity at z = - 1 .O and z = -0.5 
for E = (-) and E = (- - - 1. 

at z = 1, r = 1. Similarly, the lower Ekman layer produces a net mass flux into the 
,!d layer along its bottom edge. An I& by l6 corner sink singularity located at z = - 1, 
r = 1 feeds the required mass to this Ekman layer from the convection field in the 
side layer. The resultant flow is a small correction to the leading-order convection 
field in the side layer. The multiscale analysis used to obtain the leading- order stream 
function ( 3 . 8 ~ )  also gives us most of this first-order correction. We shall assume the 
same z-variation as in the leading-order term, i.e. d5, because of the difficulty of the 
analysis at  the order needed to obtain the s-variation directly. The meridional 

9-2 
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FIGURE 4. The first-order correction to the thermocapillary meridional circulation in the side 
boundary layer of the liquid cylinder with A = 1 and E = 10-'J. 

P 

. . .  - .  . . .  . -  - - - .  - 
circulation tor the correction is shown in figure 4 for & =  1 0 - O  and A = 1. Our 
x-variation assumption amounts to a difference of about 2 % a t  p = 4 for the given 
parameter values with respect to no x-variation. Note that this flow is not a uniform 
correction to the leading-order convection field of figure 3(a )  because of the 
appearance of the corner singularities. 

Hunter (1967) discussed in detail how this correction in the side layer is obtained. 
Even though he studied the flow due to buoyancy in a heated annulus with rigid 
sidewalls and did not use a multiscale method, the essential details of the interaction 
of the flow in the side layer with the Ekman layers at the top and bottom are the 
same. However, Hunter's correction is not uniformly valid in the radial coordinate, 
which is why a multiscale analysis was used in the present work. 

4. ine centmugal buoyancy now 
System (2.1) and the boundary conditions (2.5) with BA = M ,  = 0 describe the 

linear theory for the motion in the liquid cylinder due to centrifugal buoyancy. Since 
the Ekman number is small the motion in the cylinder is composed of four parts: 
a core motion, an Ekman layer on the top and the bottom plates, and a side layer on 
the liquid-gas interface. The effect of the Ekman layers on the core is described by 
the equivalent Ekman matching conditions (3.1), and so the motion in these 
boundary layers will not be calculated explicitly. 

The solution in the core is given by an expansion in powers of l$ as follows: 

.Ci = O(E) ,  fl = !jA-'arz+O(Ef), Zi, = -!+&+O(E), (4 .1a,b,c)  

j3 = j3l(r)l$+O(E), @ = +rEf+O(E), T = z, (4.1 d ,  e , f  

where the 'hat '  refers to core variables. This solution satisfies all the boundary 
conditions at  the liquid-gas interface to leading order in the small parameter E except 
for the stream-function condition. Thus a boundary layer forms at this interface in 
order to transfer mass from the lower Ekman layer to the upper. Note also that the 
effects of convection on the temperature profile, which include boundary-layer 
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behaviour at the liquid-gas interface, come in to the next order in the small parameter 
&A. 

To investigate the flow in the side layer we introduce a boundary-layer coordinate 
defined as in (3.2) and scale the dependent variables as 

v = E & ,  +=a$? (4.2a, b )  

The resulting boundary-layer equations are the same as for the thermocapillary 
problem, but with different boundary conditions on the surface of the cylinder, i.e. 

(4.3a) 

o n p  = 0. (4.3b) 1 (4 .34  

q + E f P + O ( B )  = 0, 

$0 = - @ + O ( E t )  

This system of equations can be solved using the method of multiple scales in 
exactly the same manner as for the thermocapillary problem. The resulting approxi- 
mation for the flow due to centrifugal buoyancy uniformly valid in the coordinate 
r is 

(4.4a) 

(4.4b) 

xsin - y --c;+~], A 2x (4.4c) [? n P  22/3yn 

An = (n -+)x ,  yn  = (BAA,)& (4 .44  e )  

The meridional circulation for this problem is shown in figures 5 ( a , b )  and the 
azimuthal velocity in the boundary layer is shown in figure 5(c )  for E = and 
A =  1. 

The centrifugal body force driving this flow is felt throughout the entire cylinder. 
Thus the resultant motion is not confined exclusively to a boundary layer at the 
liquid-gas interface as in the case of the thermocapillary flow. In  the interior a 
swirling shear flow develops that balances centrifugal buoyancy with Coriolis forces. 
This non-zero azimuthal velocity is brought to zero on the top and bottom rigid plates 
by standard Ekman layers with also produce the constant downward axial velocity 
in the core. The circulation in the cylinder between the top and bottom Ekman layers 
is then completed by an O(&) mass flux in the side layer. 
An analysis of the motion caused by centrifugal buoyancy in a rigid cylinder was 

done by Baroilon & Pedlosky (1967), who also included gravity, and by Homsy & 
Hudson (1969), who did not. The core motion, the motion in the top and bottom 
Ekman layers, and even the scaling of the side layer, are exactly the same as in the 
present problem. However, in a rigid cylinder a closed O ( B )  meridional circulation 
develops in the side layer so that the appropriate rigid-wall boundary conditions can 
be satisfied. This flow is missing in the liquid cylinder because of the stress-free 
sidewall. 

Hunter (1967) also calculated this closed O(Eb) meridional circulation, but in the 
slightly different problem of a horizontally heated, rotating annulus. The boundary- 
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FIGURE 5. The motion in the side boundary layer due to centrifugal buoyancy with A = 1 and 
E = 10-O. The meridional circulation is shown in (a) for p = 0 to p = 4.0, and in (b)  for p = 3.0 
t o p = 8 . 0 .  (c) Azimuthal velocity:-, % = - l o . - - - -  . ,  I -075.--- . ,  1 - 0 5 . - - - - - ,  . ,  
-0.25. 

layer analysis used in that problem, which he discussed in detail, is essentially the 
same as in the present case except for differences associated with the stress-free 
sidewall boundary conditions. 

5. The temperature correction in the core 
Of particular interest is the nonlinear correction to the linear temperature profile 

in the core due to the buoyancy-driven and the surface-tension-driven flows. This can 
be obtained from (2.1 d, g )  and (2.5d) by solving for the temperature in terms of a 
power series in €A as follows: 

T = !P+eA!P+ ... . (5.1) 
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To leading order with the ambient temperature T, = z we find that To = z as 
before. 

A t  the next order in eA we obtain a partial differential equation for 271 that is solved 
in four parts: in the core, in the boundary layer at r = 1 and in the boundary layers 
at z = f 1. Since we are primarily interested in the core temperature, we solve for 
the temperature in the boundary layers only in order to derive an equivalent 
boundary condition for the core. From this analysis we obtain the following system : 

(5.2a) 

271 = O ( B )  on z = f i ,  (5.2b) 

C+BP = -$zPrE-f+O(E-f) on r = 1. ( 5 . 2 ~ )  

Note that the temperature correction described by system (5.2) is only the result 
of the motion due to centrifugal buoyancy. The thermocapillary convection in the 
boundary layer at the free surface induces no interior motion to contribute to (5.2a), 
and it does not contribute a heat flux to the equivalent core boundary condition ( 5 . 2 ~ ) .  

1 
q,. +- r 

+ A 2 c ,  = -&PrE-f + O( i ) ,  

System (5.2) is solved in terms of a power series in E*, i.e. 

271 = E-4 'P  + E-i YP + . . . . (5.3) 

Thus the leading-order approximation to system (5.2) is simply 

where 

(5 .4a)  1 03 

O F  = -aPrA-2 D,I,(AA,r) cosh,z , 
n-1 

Dn (5.4b) 

An = ( n - # n ,  (5.4c) 

and I, and I, are modified Bessel functions. The isotherms calculated by this analysis 
are shown in figure 6 for two values of the Biot number. 

The net mass flux in the I& side layer due to centrifugal buoyancy is directed from 
the lower to the upper Ekman layer. This motion brings cooler fluid from the bottom 
of the cylinder to  the warmer upper part, producing a convective cooling on the fluid 
in the core. The lateral boundary condition ( 5 . 2 ~ )  for the temperature correction in 
the core models this effect as an imposed positive heat f u x  out of the core. 

The downward axial velocity in the interior brings warm fluid from the top of the 
cylinder to the cooler regions below, producing a convective heating of the fluid in 
the core. This effect is modelled as the positive rate of internal heat generation density 
term that appears in ( 5 . 2 ~ ~ ) .  Note that the total rate of internal heat generation in 
the cylinder exactly balances the imposed heat flux out of the cylinder. This is because 
the buoyancy-driven convection is closed and the motion of fluid in the top and 
bottom Ekman layers is along constant-temperature surfaces thus producing no net 
heat flux into the interior. 

A useful measure of the effects of convection is the total heat flux into either end 
of the cylinder, denoted by &. In  dimensionless terms this is a Nusselt number 

aT Nu = + 2  J, rdr,  
2 - f l  

(5 .5a)  
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FIQURE 6. The isotherms in the interior of the liquid cylinder due to the convective effects of the 
motion caused by centrifugal buoyancy with A = 1 and B = 0 (-) and B = 1 (- - -). The 
parameter group €a Pr A- lEf  is set equal to one to emphasize the correction to the linear 
temperature profile. 

where 

From the previous analysis we find 

NU = & 1 -+a Pr E+A-'P( A ,  B) ,  

where 

(5.5b) 

( 5 . 6 ~ )  

(5.6b) 

The function F(A,  B )  is shown in figure 7 for various values of A .  Note that when 
B = 0, 

" 0 1  
F =  1-2 z - = O ,  N U =  f l .  - (5.7) 

n-1 

When the Biot number is zero the imposed heat flux at the lateral boundary is 
exactly enough to balance the rate of internal heat generation. The temperature field 
given by ( 5 . 4 ~ )  is even, so the heat flux at  both ends is either into the cylinder or 
out of it. Thus the only way to conserve energy when B = 0 is to have no heat flux 
at  the ends, due to convection, i.e. F(A,B)  = 0. 

As B increases from zero, the net heat flux from the lateral surface is reduced 
because there is an increased heat flux from the ambient gas to the core given by the 
BOP term. This reduces the temperature difference at  any z-location between the 
lateral surface and the ambient gas as shown in figure 6. Correspondingly the heat 
flux out of the cylinder at the ends, due to convection, must be increased an equivalent 
amount, and the Nusselt number, i.e. the total heat flux into the cylinder, decreases. 
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FIQURE 7. The variation of the function F(A,B)  defmed by (5.6b) with the Biot number. -, 
A = 0 . 5 ; - - - -  9 ,  1.0~---,5.0;-----, 10.0. 

6. The first correction to the interface shape 
Now that we know the flow field in the liquid cylinder due to both thermocapillarity 

and centrifugal buoyancy, we can compute the effects of this flow on the free-surface 
deformation. This can be done by considering the normal-stress boundary condition 
(2.3). At O(Ca) we find 

A2S" + (1  + BD) S = - E-pI,.-1+ 2Aur(,,1. (6.1 a) 

In addition the boundary conditions (Z . lp ,  T )  and the expansion ( 2 . 2 ~ )  yield at O(Ca) 

S(f 1 )  = 0, f l  Sdz = 0. (6.1 b,  c )  

6.1. Themcapillarity 
From the boundary-layer analysis of this problem we find that the pressure at the 
liquid-gas interface can be written as follows: 

where C, is a constant of integration. Since u, = O(1) we need only use the pressure 
term to calculate the interface shape to leading order in E.  

The solution of the boundary-value problem (6.1) with the pressure term given by 
(6.2) is 
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where D2 = (1  + B,)/A2. When D = A,, m = I ,  2 , 3 ,  . . ., the solution is 

03 1 
I 

- ( - l)m+l sin Am z +O(E-i) .  (6.3b) 
n + m  n-1 ~i (A: - A: ) 

The interface shapes given by ( 6 . 3 ~ )  with B, = 0 and by (6.3b) with B, = A2A?- 1 
are shown in figure 8. The amplitude of the deformation has been exaggerated for 
clarity. Equations ( 2 . 2 ~ )  and (6.3) show that the deformation of the interface from 
a cylindrical shape is given as 

7- 1 = O(CuA-fE-%). (6.4) 

The interface shape for this flow is consistent with the behaviour noted in other 
thermocapillary problems. The free-surface flow is downward and the resultant 
viscous forces drag nearby fluid downward also. To provide a return flow a pressure 
gradient is produced such that the pressure is greater at  the bottom than at the top. 
This pressure distribution then produces the observed shape. 

6.2. CentrifugaE buoyancy 
For this case the pressure at the liquid-gas interface is given as 

co ( - i ) n + i  
-PI,-, = a& Z sin A, z + C2 + O ( B ) ,  (6.5) 

where C, is a constant of integration. We also find u, = O(l$),  so that the interface 
shape to leading order in E is again given by the pressure term. 

n-1 An 

Integrating the boundary-value problem, we obtain 

When D = A,, m = 1,2,3,  ..., the solution is 

aE-: ( - 1 ),+l sin An z ( - 1 )m+lz cos Am z 
2AL 

- S(z)  = - x 
A2 n-1 A n ( A : - A i )  

n 9 m  
m 

-(-l)m+l sinA,z x +O(E-t) .  (6.6b) 
n-1 A n ( G - A i )  

n + m  

The interface shapes given by ( 6 . 6 ~ )  with B, = 0 and by (6.6b) with B, = A2A:- 1 
are identical with those shown in figure 8 for the previous problem to within the 
accuracy of the plotter. However, the actual deformation is scaled differently as 

17 - 1 = O(Cu aA-2E-:). (6.7) 

As B, is increased from zero the shape of the free surface stays qualitatively the 
same for both flows. For the particular value shown of B, = A2A?- 1 = 1.4674 the 
maximum deformation has increased by approximately 19.5 %. However, when there 
is no motion in the cylinder we know that there is a critical value of B, past which 
the cylindrical shape loses its stability. The subject of the stability of rotating liquid 
cylinders without additional interior motion has been studied extensively by Brown 
& Scriven (1980). They found that the cylinder will first lose its stability to 
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FIQURE 8. The shape of the free surface due to both the thermocapillary flow and the flow due to 
centrifugal buoyancy for A = 1 ,  E = and for B, = 0 (-) and B, = 1.4674 (- - -). The 
amplitude of the deformation hm been exaggerated for clarity. 

non-axisymmetric disturbances at B, = inz = 2.4674 when A = 1, but a new equi- 
librium shape for the liquid could not be determined. The influence of the interior 
motion due to thermocapillarity and centrifugal buoyancy on this free-surface 
instability remains a topic for future investigation. 

7. Discussion 
Since our initial motivation for this analysis stems from the float-zone process of 

crystal growth, we are especially interested in zones of silicon, one of the most common 
materials used in these systems. In  the discussion that follows we examine whether 
the linear theory can be applied to the typical silicon zone described in table 1. 

7.1. The therrnocapillary flow 
The linear analysis of $4 requires the nonlinear terms to be small enough to ignore. 
In the thermocapillary layer this restriction becomes sA = o ( B )  since we used terms 
up to O(B) in obtaining the approximation (3.8). However, the basic structure of the 
boundary layer is retained if sA = o(,?$). This is still a very severe restriction. Using 
the typical parameters for a silicon float zone from table 1, we find that 

AT 4 0.02 "C. (7.1) 

Since a AT of about 20 "C is typical in an industrial silicon float zone of this size, 
it is obvious that the linear theory is inapplicable. Convective nonlinearities will be 
important in any analysis of the flow for this system. These terms could cause a 
thickening of the boundary layer and, possibly, a penetration into the core as the 
Rossby number is increased from zero. 

Even though this linear theory cannot be applied to a silicon float zone, it still 
retains its value as an appropriate limiting case of an important industrial process. 
The benefits of the analysis are twofold. First, we have gained a basic knowledge of 
the mechanism for boundary-layer formation in a linear system. The balance of forces 
in the boundary layer and the range of applicability of the analysis have been 
identified. If this basic force balance is not disturbed very much by the influence of 
the convective nonlinearities, then the range of applicability of the analysis could be 
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much larger than predicted. The simplicity of the linear system in describing at  least 
qualitatively the flow characteristics of the more complicated nonlinear system would 
then be very valuable. 

Secondly, if our goal is to reduce the effects of thermocapillary convection in the 
core, then the linear analysis has given us an inequality with which we can guarantee 
a boundary-layer confinement of the flow. This inequality is of course EA 4 a, or 
equivalently, 

Even when the nonlinear terms can safely be neglected, there still remains the 
restriction on the Ekman number needed for the boundary-layer analysis to 
accurately describe the flow. Since the analysis used a power series in a, we must 
have 4 1.  For the silicon float zone described in table 1 ,  we find a = 0.39. 
Therefore we cannot expect a very accurate description of the boundary-layer flow 
in a silicon system when using this asymptotic analysis even when AT is small enough, 
unless i2 is increased. 

Chun ( 1980) studied the interaction between thermocapillary convection and 
rotation experimentally. Here a liquid cylinder of silicone oil was heated from above 
with AT = 5 "C and uniformly spun at speeds up to lo00 rev/min. At the maximum 
speed corresponding to E = 0.02 the thermocapillary motion near the axis of the 
cylinder was essentially suppressed, but the convective circulation was still preserved 
near the free surface. Thus the system showed a trend toward confinement of the 
thermocapillary motion near the free surface as the rotation rate increased, in 
agreement with the inequality (7.2). However, the velocity field in the experiment 
is not correctly described using this linear boundary-layer theory because the values 
of E! = 0.52 and AT = 5 O C  are too large for the analysis to hold (the appropriate 
limits for this system are AT -4 7.5 "C and 

The numerical work of Kobayashi (1984) also considered the interaction of 
thermocapillary convection with rotation. In his model the zone was uniformly heated 
from the sides, so direct comparison with the present work is not possible. However, 
for the case of uniform rotation with E = 0.01 and with the other parameter values 
equal to those typical of a silicon float zone, he did see a confinement of the thermo- 
capillary motion to a region near the free surface, although it was certainly too large 
to be called a boundary layer. 

To investigate nonlinear effects the next term in the Rossby-number expansion for 
the thermocapillary flow could be computed. However, such a computation would 
be extremely difficult. In addition, the above inequalities show that in a silicon zone, 
at least, the nonlinear effects are not small. It seems then that the proper way to  
study this behaviour is either to formulate a nonlinear boundary-layer theory that 
could be solved numerically, or to solve the original governing equations directly as 
in the work of Kobayashi (1984). 

4 1) .  

7.2. The centrijuqal-buoyancy flow 
The linear theory accurately describes the centrifugal flow field when ea = BAT 4 a. 
For our typical silicon float zone described in table 1 this condition yields 

AT 4 414 "C, (7.3) 

which is certainly met for any zone of industrial interest. 
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The magnitude of the centrifugal flow field compared with the thermocapillary flow 

(7.4) 

field is given by the parameter 
1 - P W ( W ~ P  

A2YT ' 
A - a -  

where a is evaluated using the thermocapillary velocity scale (3.5). For our typical 
silicon float zone A-la = 0.19 x 4 1.  Thus the flow in the side layer will be 
dominated by the thermocapillary motion, but in the core there will be a very small 
motion due to centrifugal buoyancy. 

7.3. The temperature correction in  the core 
The first-order temperature correction to the linear temperature profile is 
O(eaPrA-lE3). This correction is solely the result of the motion due to centrifugal 
buoyancy and it is of the same order as that found by Homsy & Hudson (1969) for 
a rigid cylinder. The thermocapillary motion has no effect on the temperature in the 
core because it induces no interior convective motions and produces no equivalent 
heat fluxes on the lateral surface of the core. 

AT. Even for AT as 
large as 100 "C this effect will be very small. 

For our typical silicon float zone Ea Pr A-'E* = 0.56 x 

7.4. The free-surface deformation 
The free-surface deformation from a cylindrical shape has been described as an 
expansion in powers of the capillary number. From (6.4) we see that the result for 
the thermocapillary flow is valid when 

Ca 4 A!Ek (7.5) 

AT 4 254 OC. (7.6) 

With our silicon float zone this becomes Ca 4 0.023, or 

This restriction is certainly met when the flow can be described by the linear theory, 
so in this case the liquid stays cylindrical to first order. However, in those situations 
in which the linear theory is invalid the result (7.5) is also invalid since it is based 
on a pressure field obtained from the linear theory. When nonlinear effects are 
appreciable the pressure could increase and the normal stresses on the free surface 
could become comparable to the surface-tension forces resulting in significant surface 
deflections. Therefore the non-deformability assumption can only be justified on the 
basis of a full nonlinear calculation. 

The surface deflection calculated for the flow due to centrifugal buoyancy is valid 
when 

For our silicon zone this is Ca 4 3100, or 

Ca 4 a-IA2B. (7.7) 

(7.8) AT 4 3.4 x 107 OC. 

Thus we see that linear theory adequately describes both the flow and the deformation 
of the free surface in this case. 

8. Conclusions 
Both experimental and numerical work has indicated that a large enough uniform 

rotation of a float zone would tend to confine the thermocapillary motion to a region 
near the free surface. This observation provided the motivation to calculate the flow 
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field in the rapid rotation limit. To begin, we developed a linear theory using the 
standard techniques for rotating flows as discussed by Greenspan (1968). However, 
we departed from common practice when we solved for the flow using a multiscale 
perturbation method. This method enabled us to obtain a first-order correction to 
the thermocapillary flow that is uniformly valid in the radial coordinate. For 
completeness, we also calculated the flow field and the correction to the temperature 
field in the core due to centrifugal buoyancy, and the deformation of the interface 
shape for both of the above flows. The interesting new features exhibited by this 
system are the free-surface velocity scale given by (3.5) and the free-surface deflection 
scales given by (6.4) and (6.7). 

The linear theory also yielded explicit inequalities which determined when the 
theory was applicable to a particular system. Unfortunately, these relations show that 
the thermocapillary motion in a small silicon zone, which is of particular interest to 
crystal growers, is not governed by the linear theory. In  fact, nonlinear effects seem 
to be very important for this case. Thus further investigation into the nonlinear 
structure of the confined region in a rapidly rotating float zone is warranted. 
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